Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling.

Identifieur interne : 000183 ( Main/Exploration ); précédent : 000182; suivant : 000184

Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling.

Auteurs : Fan Xu [République populaire de Chine] ; Jiuyou Tang [République populaire de Chine] ; Shaopei Gao [République populaire de Chine] ; Xi Cheng [République populaire de Chine] ; Lin Du [République populaire de Chine] ; Chengcai Chu [République populaire de Chine]

Source :

RBID : pubmed:31436865

Descripteurs français

English descriptors

Abstract

Pre-harvest sprouting (PHS) is one of the major problems in cereal production worldwide, which causes significant losses of both yield and quality; however, the molecular mechanism underlying PHS remains largely unknown. Here, we identified a dominant PHS mutant phs9-D. The corresponding gene PHS9 encodes a higher plant unique CC-type glutaredoxin and is specifically expressed in the embryo at the late embryogenesis stage, implying that PHS9 plays some roles in the late stage of seed development. Yeast two-hybrid screening showed that PHS9 could interact with OsGAP, which is an interaction partner of the abscicic acid (ABA) receptor OsRCAR1. PHS9- or OsGAP overexpression plants showed reduced ABA sensitivity in seed germination, whereas PHS9 or OsGAP knock-out mutant plants showed increased ABA sensitivity in seed germination, suggesting that PHS9 and OsGAP acted as negative regulators in ABA signaling during seed germination. Interestingly, the germination of PHS9 and OsGAP overexpression or knock-out plant seeds was weakly promoted by H2 O2 , implying that PHS9 and OsGAP could affect reactive oxygen species (ROS) signaling during seed germination. These results indicate that PHS9 plays an important role in the regulation of rice PHS through the integration of ROS signaling and ABA signaling.

DOI: 10.1111/tpj.14501
PubMed: 31436865


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling.</title>
<author>
<name sortKey="Xu, Fan" sort="Xu, Fan" uniqKey="Xu F" first="Fan" last="Xu">Fan Xu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tang, Jiuyou" sort="Tang, Jiuyou" uniqKey="Tang J" first="Jiuyou" last="Tang">Jiuyou Tang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gao, Shaopei" sort="Gao, Shaopei" uniqKey="Gao S" first="Shaopei" last="Gao">Shaopei Gao</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Xi" sort="Cheng, Xi" uniqKey="Cheng X" first="Xi" last="Cheng">Xi Cheng</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Du, Lin" sort="Du, Lin" uniqKey="Du L" first="Lin" last="Du">Lin Du</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chu, Chengcai" sort="Chu, Chengcai" uniqKey="Chu C" first="Chengcai" last="Chu">Chengcai Chu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31436865</idno>
<idno type="pmid">31436865</idno>
<idno type="doi">10.1111/tpj.14501</idno>
<idno type="wicri:Area/Main/Corpus">000118</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000118</idno>
<idno type="wicri:Area/Main/Curation">000118</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000118</idno>
<idno type="wicri:Area/Main/Exploration">000118</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling.</title>
<author>
<name sortKey="Xu, Fan" sort="Xu, Fan" uniqKey="Xu F" first="Fan" last="Xu">Fan Xu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tang, Jiuyou" sort="Tang, Jiuyou" uniqKey="Tang J" first="Jiuyou" last="Tang">Jiuyou Tang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gao, Shaopei" sort="Gao, Shaopei" uniqKey="Gao S" first="Shaopei" last="Gao">Shaopei Gao</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Xi" sort="Cheng, Xi" uniqKey="Cheng X" first="Xi" last="Cheng">Xi Cheng</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Du, Lin" sort="Du, Lin" uniqKey="Du L" first="Lin" last="Du">Lin Du</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chu, Chengcai" sort="Chu, Chengcai" uniqKey="Chu C" first="Chengcai" last="Chu">Chengcai Chu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (metabolism)</term>
<term>Abscisic Acid (pharmacology)</term>
<term>GTPase-Activating Proteins (genetics)</term>
<term>GTPase-Activating Proteins (metabolism)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Gene Expression Regulation, Plant (genetics)</term>
<term>Germination (drug effects)</term>
<term>Germination (genetics)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Hydrogen Peroxide (pharmacology)</term>
<term>Oryza (drug effects)</term>
<term>Oryza (genetics)</term>
<term>Oryza (growth & development)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Seedlings (drug effects)</term>
<term>Seedlings (genetics)</term>
<term>Seedlings (growth & development)</term>
<term>Seeds (drug effects)</term>
<term>Seeds (genetics)</term>
<term>Seeds (growth & development)</term>
<term>Signal Transduction (drug effects)</term>
<term>Signal Transduction (genetics)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide abscissique (métabolisme)</term>
<term>Acide abscissique (pharmacologie)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Facteurs temps (MeSH)</term>
<term>Germination (effets des médicaments et des substances chimiques)</term>
<term>Germination (génétique)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Graines (croissance et développement)</term>
<term>Graines (effets des médicaments et des substances chimiques)</term>
<term>Graines (génétique)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Oryza (croissance et développement)</term>
<term>Oryza (effets des médicaments et des substances chimiques)</term>
<term>Oryza (génétique)</term>
<term>Peroxyde d'hydrogène (pharmacologie)</term>
<term>Plant (croissance et développement)</term>
<term>Plant (effets des médicaments et des substances chimiques)</term>
<term>Plant (génétique)</term>
<term>Protéines d'activation de la GTPase (génétique)</term>
<term>Protéines d'activation de la GTPase (métabolisme)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes végétaux (génétique)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
<term>Transduction du signal (génétique)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>GTPase-Activating Proteins</term>
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Abscisic Acid</term>
<term>GTPase-Activating Proteins</term>
<term>Glutaredoxins</term>
<term>Plant Proteins</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Abscisic Acid</term>
<term>Hydrogen Peroxide</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Graines</term>
<term>Oryza</term>
<term>Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Germination</term>
<term>Oryza</term>
<term>Seedlings</term>
<term>Seeds</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Germination</term>
<term>Graines</term>
<term>Oryza</term>
<term>Plant</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Germination</term>
<term>Oryza</term>
<term>Seedlings</term>
<term>Seeds</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Oryza</term>
<term>Seedlings</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Germination</term>
<term>Glutarédoxines</term>
<term>Graines</term>
<term>Oryza</term>
<term>Plant</term>
<term>Protéines d'activation de la GTPase</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide abscissique</term>
<term>Espèces réactives de l'oxygène</term>
<term>Glutarédoxines</term>
<term>Protéines d'activation de la GTPase</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide abscissique</term>
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Protein Binding</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Facteurs temps</term>
<term>Liaison aux protéines</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Pre-harvest sprouting (PHS) is one of the major problems in cereal production worldwide, which causes significant losses of both yield and quality; however, the molecular mechanism underlying PHS remains largely unknown. Here, we identified a dominant PHS mutant phs9-D. The corresponding gene PHS9 encodes a higher plant unique CC-type glutaredoxin and is specifically expressed in the embryo at the late embryogenesis stage, implying that PHS9 plays some roles in the late stage of seed development. Yeast two-hybrid screening showed that PHS9 could interact with OsGAP, which is an interaction partner of the abscicic acid (ABA) receptor OsRCAR1. PHS9- or OsGAP overexpression plants showed reduced ABA sensitivity in seed germination, whereas PHS9 or OsGAP knock-out mutant plants showed increased ABA sensitivity in seed germination, suggesting that PHS9 and OsGAP acted as negative regulators in ABA signaling during seed germination. Interestingly, the germination of PHS9 and OsGAP overexpression or knock-out plant seeds was weakly promoted by H
<sub>2</sub>
O
<sub>2</sub>
, implying that PHS9 and OsGAP could affect reactive oxygen species (ROS) signaling during seed germination. These results indicate that PHS9 plays an important role in the regulation of rice PHS through the integration of ROS signaling and ABA signaling.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31436865</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>100</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2019</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling.</ArticleTitle>
<Pagination>
<MedlinePgn>1036-1051</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.14501</ELocationID>
<Abstract>
<AbstractText>Pre-harvest sprouting (PHS) is one of the major problems in cereal production worldwide, which causes significant losses of both yield and quality; however, the molecular mechanism underlying PHS remains largely unknown. Here, we identified a dominant PHS mutant phs9-D. The corresponding gene PHS9 encodes a higher plant unique CC-type glutaredoxin and is specifically expressed in the embryo at the late embryogenesis stage, implying that PHS9 plays some roles in the late stage of seed development. Yeast two-hybrid screening showed that PHS9 could interact with OsGAP, which is an interaction partner of the abscicic acid (ABA) receptor OsRCAR1. PHS9- or OsGAP overexpression plants showed reduced ABA sensitivity in seed germination, whereas PHS9 or OsGAP knock-out mutant plants showed increased ABA sensitivity in seed germination, suggesting that PHS9 and OsGAP acted as negative regulators in ABA signaling during seed germination. Interestingly, the germination of PHS9 and OsGAP overexpression or knock-out plant seeds was weakly promoted by H
<sub>2</sub>
O
<sub>2</sub>
, implying that PHS9 and OsGAP could affect reactive oxygen species (ROS) signaling during seed germination. These results indicate that PHS9 plays an important role in the regulation of rice PHS through the integration of ROS signaling and ABA signaling.</AbstractText>
<CopyrightInformation>© 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Fan</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">0000-0002-9223-8846</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Jiuyou</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Shaopei</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Xi</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Lin</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chu</LastName>
<ForeName>Chengcai</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0001-8097-6115</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020690">GTPase-Activating Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020690" MajorTopicYN="N">GTPase-Activating Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018525" MajorTopicYN="N">Germination</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">ABA signaling</Keyword>
<Keyword MajorTopicYN="Y">ROS signaling</Keyword>
<Keyword MajorTopicYN="Y">glutaredoxin</Keyword>
<Keyword MajorTopicYN="Y">pre-harvest sprouting</Keyword>
<Keyword MajorTopicYN="Y">rice (Oryza sativa L.)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>07</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31436865</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.14501</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Audran, C., Liotenberg, S. and Gonneau, M. (2001) Localization and expression of zeaxanthin epoxidase mRNA in Arabidopsis in response to drought stress and during seed development. Aust. J. Plant Physiol. 28, 1161-1173.</Citation>
</Reference>
<Reference>
<Citation>Bahin, E., Bailly, C., Sotta, B., Kranner, I., Corbineau, F. and Leymarie, J. (2011) Crosstalk between reactive oxygen species and hormonal signaling pathways regulates grain dormancy in barley. Plant, Cell Environ. 34, 980-993.</Citation>
</Reference>
<Reference>
<Citation>Bailly, C. (2004) Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 14, 93-107.</Citation>
</Reference>
<Reference>
<Citation>Bailly, C., El-Maarouf-Bouteau, H. and Corbineau, F. (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C. R. Biol. 331, 806-814.</Citation>
</Reference>
<Reference>
<Citation>Barba-Espín, G., Diaz-vivancos, P., Job, D., Belghazi, M., Job, C. and Hernández, J.A. (2011) Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach. Plant, Cell Environ. 34, 1907-1919.</Citation>
</Reference>
<Reference>
<Citation>Bazin, J., Langlade, N., Vincourt, P., Arribat, S., Balzergue, S., El-Maarouf-Bouteau, H. and Bailly, C. (2011) Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. Plant Cell, 23, 2196-2208.</Citation>
</Reference>
<Reference>
<Citation>Bender, K.W., Wang, X., Cheng, G.B., Kim, H.S., Zielinski, R.E. and Huber, S.C. (2015) Glutaredoxin AtGRXC2 catalyses inhibitory glutathionylation of Arabidopsis BRI1-associated receptor-like kinase 1 (BAK1) in vitro. Biochem. J. 467, 399-413.</Citation>
</Reference>
<Reference>
<Citation>Black, M., Bewley, J.D. and Halmer, P. (2006) The encyclopedia of seeds: science, technology and uses. Wallingford, UK: CABI Publishing.</Citation>
</Reference>
<Reference>
<Citation>Che, R., Tong, H., Shi, B. et al. (2015) Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat. Plants, 2, 15195.</Citation>
</Reference>
<Reference>
<Citation>Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R. and Abrams, S.R. (2010) Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651-679.</Citation>
</Reference>
<Reference>
<Citation>Diaz, M., Sanchez-Barrena, M.J., Gonzalez-Rubio, J.M. et al. (2016) Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling. Proc. Natl Acad. Sci. USA, 13, E396-E405.</Citation>
</Reference>
<Reference>
<Citation>Du, L., Xu, F., Fang, J. et al. (2018) Endosperm sugar accumulation caused by mutation of PHS8/ISA1 leads to pre-harvest sprouting in rice. Plant J. 95, 545-556.</Citation>
</Reference>
<Reference>
<Citation>El-Kereamy, A., Bi, Y.M., Mahmood, K., Ranathunge, K., Yaish, M.W., Nambara, E. and Rothstein, S.J. (2015) Overexpression of the CC-type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants. Front. Plant Sci. 6, 934.</Citation>
</Reference>
<Reference>
<Citation>El-Maarouf-Bouteau, H. and Bailly, C. (2008) Oxidative signaling in seed germination and dormancy. Plant Signal Behav. 3, 175-182.</Citation>
</Reference>
<Reference>
<Citation>El-Maarouf-Bouteau, H., Meimoun, P., Job, C., Job, D. and Bailly, C. (2013) Role of protein and mRNA oxidation in seed dormancy and germination. Front. Plant Sci. 4, 77.</Citation>
</Reference>
<Reference>
<Citation>El-Maarouf-Bouteau, H., Sajjad, Y., Bazin, J., Langlade, N., Cristescu, S.M., Balzergue, S., Baudouin, E. and Bailly, C. (2015) Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant, Cell Environ. 38, 364-374.</Citation>
</Reference>
<Reference>
<Citation>Fang, J. and Chu, C. (2008) Abscisic acid and the pre-harvest sprouting in cereals. Plant Signal Behav. 3, 1046-1048.</Citation>
</Reference>
<Reference>
<Citation>Fang, J., Chai, C., Qian, Q. et al. (2008) Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Plant J. 54, 177-189.</Citation>
</Reference>
<Reference>
<Citation>Finkelstein, R., Gampala, S. and Rock, C. (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell, 14, S15-S45.</Citation>
</Reference>
<Reference>
<Citation>Fu, J., Chu, J., Sun, X., Wang, J. and Yan, C. (2012) Simple, rapid, and simultaneous assay of multiple carboxyl containing phytohormones in wounded tomatoes by UPLC-MS/MS using single SPE purification and isotope dilution. Anal. Sci. 28, 1081-1087.</Citation>
</Reference>
<Reference>
<Citation>Gutsche, N., Thurow, C., Zachgo, S. and Gatz, C. (2015) Plant-specific CC-type glutaredoxins: functions in developmental processes and stress responses. Biol. Chem. 396, 495-509.</Citation>
</Reference>
<Reference>
<Citation>Hattori, T., Vasil, V., Rosenkrans, L., Hannah, L.C., McCarty, D.R. and Vasil, I.K. (1992) The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev. 6, 609-618.</Citation>
</Reference>
<Reference>
<Citation>Hoecker, U., Vasil, I.K. and McCarty, D.R. (1995) Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize. Genes Dev. 9, 2459-2469.</Citation>
</Reference>
<Reference>
<Citation>Hoecker, U., Vasil, I.K. and McCarty, D.R. (1999) Signaling from the embryo conditions Vp1-mediated repression of alpha-amylase genes in the aleurone of developing maize seeds. Plant J. 19, 371-377.</Citation>
</Reference>
<Reference>
<Citation>Holmgren, A. (1976) Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc. Natl Acad. Sci. USA, 73, 2275-2279.</Citation>
</Reference>
<Reference>
<Citation>Hong, L., Tang, D., Zhu, K., Wang, K., Li, M. and Cheng, Z. (2012) Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin. Plant Cell, 24, 577-588.</Citation>
</Reference>
<Reference>
<Citation>Hu, W.M., Ma, H.S., Fan, L.J. and Ruan, S.L. (2003) Characteristics of pre-harvest sprouting in sterile lines in hybrid rice seeds production. Acta. Agron. Sin. 29, 441-446 (in Chinese).</Citation>
</Reference>
<Reference>
<Citation>Ishibashi, Y., Aoki, N., Kasa, S., Sakamoto, M., Kai, K., Tomokiyo, R., Watabe, G., Yuasa, T. and Iwaya-Inoue, M. (2017) The interrelationship between abscisic acid and reactive oxygen species plays a key role in barley seed dormancy and germination. Front. Plant Sci. 8, 275.</Citation>
</Reference>
<Reference>
<Citation>Itoh, J., Nonomura, K., Ikeda, K., Yamaki, S., Inukai, Y., Yamagishi, H., Kitano, H. and Nagato, Y. (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol. 46, 23-47.</Citation>
</Reference>
<Reference>
<Citation>Jambunathan, N. (2010) Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Methods Mol. Biol. 639, 292-298.</Citation>
</Reference>
<Reference>
<Citation>Koornneef, M., Reuling, G. and Karssen, C.M. (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol. Plant. 61, 377-383.</Citation>
</Reference>
<Reference>
<Citation>Kouchi, H. and Hata, S. (1993) Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol. Gen. Genet. 238, 106-119.</Citation>
</Reference>
<Reference>
<Citation>La Camera, S., L'haridon, F., Astier, J. et al. (2011) The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants. Plant J. 68, 507-519.</Citation>
</Reference>
<Reference>
<Citation>Lefebvre, V., North, H., Frey, A., Sotta, B., Seo, M., Okamoto, M., Nambara, E. and Marion-Poll, A. (2006) Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J. 45, 309-319.</Citation>
</Reference>
<Reference>
<Citation>Lemaire, S.D. (2004) The glutaredoxin family in oxygenic photosynthetic organisms. Photosynthesis Res. 79, 305-318.</Citation>
</Reference>
<Reference>
<Citation>Li, S., Gutsche, N. and Zachgo, S. (2011) The ROXY1 C-terminal L**LL motif is essential for the interaction with TGA transcription factors. Plant Physiol. 154, 2056-2068.</Citation>
</Reference>
<Reference>
<Citation>Lin, P.C., Hwang, S.G., Endo, A., Okamoto, M., Koshiba, T. and Cheng, W.H. (2007) Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant Physiol. 143, 745-758.</Citation>
</Reference>
<Reference>
<Citation>Liu, X., Bai, X., Wang, X. and Chu, C. (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J. Plant Physiol. 164, 969-979.</Citation>
</Reference>
<Reference>
<Citation>Liu, Y., Ye, N., Liu, R., Chen, M. and Zhang, J. (2010) H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J. Exp. Bot. 61, 2979-2990.</Citation>
</Reference>
<Reference>
<Citation>Luo, A., Liu, L., Tang, Z., Bai, X., Cao, S. and Chu, C. (2005) Down-regulation of OsGRF1 gene in rice rhd1 mutant results in reduced heading date. J. Integr. Plant Biol. 47, 745-752.</Citation>
</Reference>
<Reference>
<Citation>Ma, X. and Liu, Y.G. (2016) CRISPR/Cas9-based multiplex genome editing in monocot and dicot plants. Curr. Protoc. Mol. Biol. 115, 31.6.1-31.6.21.</Citation>
</Reference>
<Reference>
<Citation>Ma, Y., Liu, L., Zhu, C. et al. (2009) Molecular analysis of rice plants harboring a multi-functional T-DNA tagging system. J. Genet. Genomics, 36, 267-276.</Citation>
</Reference>
<Reference>
<Citation>McCarty, D.R., Carson, C.B., Stinard, P.S. and Robertson, D.S. (1989) Molecular analysis of viviparous-1: an Abscisic acid-insensitive mutant of maize. Plant Cell, 1, 523-532.</Citation>
</Reference>
<Reference>
<Citation>McCarty, D.R., Hattori, T., Carson, C.B., Vasil, V., Lazar, M. and Vasil, I.K. (1991) The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell, 66, 895-905.</Citation>
</Reference>
<Reference>
<Citation>McCouch, S.R., Teytelman, L., Xu, Y., Lobos, K.B., Clare, K., Walton, M. and Stein, L. (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9, 199-207 and 257-279.</Citation>
</Reference>
<Reference>
<Citation>Merlot, S., Gosti, F., Guerrier, D., Vavasseur, A. and Giraudat, J. (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signaling pathway. Plant J. 25, 295-303.</Citation>
</Reference>
<Reference>
<Citation>Miao, X.L., Zhang, Y.J., Xia, X.C., He, Z.H., Zhang, Y., Yan, J. and Chen, X.M. (2013) Mapping quantitative trait loci for pre-harvest sprouting resistance in white-grained winter wheat line CA 0431. Crop Pasture Sci. 64, 573-579.</Citation>
</Reference>
<Reference>
<Citation>Millar, A.A., Jacobsen, J.V., Ross, J.J., Helliwell, C.A., Poole, A.T., Scofield, G., Reid, J.B. and Gubler, F. (2006) Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8′-hydroxylase. Plant J. 45, 942-954.</Citation>
</Reference>
<Reference>
<Citation>Ndamukong, I., Abdallat, A.A., Thurow, C., Fode, B., Zander, M., Weigel, R. and Gatz, C. (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J. 50, 128-139.</Citation>
</Reference>
<Reference>
<Citation>Née, G., Xiang, Y. and Soppe, W.J. (2017) The release of dormancy, a wake-up call for seeds to germinate. Curr. Opin. Plant Biol. 35, 8-14.</Citation>
</Reference>
<Reference>
<Citation>Okamoto, M., Kuwahara, A., Seo, M., Kushiro, T., Asami, T., Hirai, N., Kamiya, Y., Koshiba, T. and Nambara, E. (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8’-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol. 141, 97-107.</Citation>
</Reference>
<Reference>
<Citation>Oracz, K., El-Maarouf Bouteau, H., Farrant, J.M., Cooper, K., Belghazi, M., Job, C., Job, D., Corbineau, F. and Bailly, C. (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J. 50, 452-465.</Citation>
</Reference>
<Reference>
<Citation>Podia, V., Milioni, D., Martzikou, M. and Haralampidis, K. (2017) The role of Arabidopsis thaliana RASD1 gene in ABA-dependent abiotic stress response. Plant Biol (Stuttg), 20, 307-317.</Citation>
</Reference>
<Reference>
<Citation>Rodriguez, L., Gonzalez-Guzman, M., Diaz, M. et al. (2014) C2-domain abscisic acid-related proteins mediate the interaction of PYR/PYL/RCAR abscisic acid receptors with the plasma membrane and regulate abscisic acid sensitivity in Arabidopsis. Plant Cell, 26, 4802-4820.</Citation>
</Reference>
<Reference>
<Citation>Rouhier, N., Couturier, J. and Jacquot, J.P. (2006) Genome-wide analysis of plant glutaredoxin systems. J. Exp. Bot. 57, 1685-1696.</Citation>
</Reference>
<Reference>
<Citation>Schwartz, S.H., Tan, B.C., Gage, D.A., Zeevaart, J.A. and McCarty, D.R. (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science, 276, 1872-1874.</Citation>
</Reference>
<Reference>
<Citation>Schwartz, S.H., Tan, B.C., McCarty, D.R., Welch, W. and Zeevaart, J.A. (2003) Substrate specificity and kinetics for VP14, a carotenoid cleavage dioxygenase in the ABA biosynthetic pathway. Biochim. Biophys. Acta 1619, 9-14.</Citation>
</Reference>
<Reference>
<Citation>Sun, G.Z., Zhang, X.Y. and Xiao, S.H. (2005) Effect of reactive oxygen species on α-amylase expression of germinating wheat embryo treated with ABA and water stress. J. Triticeae Crops, 25, 50-53.</Citation>
</Reference>
<Reference>
<Citation>Suzuki, M., Wang, H.H. and McCarty, D.R. (2007) Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiol. 143, 902-911.</Citation>
</Reference>
<Reference>
<Citation>Tan, B.C., Cline, K. and McCarty, D.R. (2001) Localization and targeting of the VP14 epoxy-carotenoid dioxygenase to chloroplast membranes. Plant J. 27, 373-382.</Citation>
</Reference>
<Reference>
<Citation>Waadt, R., Schmidt, L.K., Lohse, M., Hashimoto, K., Bock, R. and Kudla, J. (2008) Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J. 56, 505-516.</Citation>
</Reference>
<Reference>
<Citation>Wang, Z., Xing, S., Birkenbihl, R.P. and Zachgo, S. (2009) Conserved functions of Arabidopsis and rice CC-type glutaredoxins in flower development and pathogen response. Mol. Plant, 2, 323-335.</Citation>
</Reference>
<Reference>
<Citation>Wang, H., Fang, J., Liang, C., He, M., Li, Q. and Chu, C. (2011) Computation-assisted SiteFinding-PCR for isolating flanking sequence tags in rice. Biotechniques, 51, 421-423.</Citation>
</Reference>
<Reference>
<Citation>Xing, S. and Zachgo, S. (2008) ROXY1 and ROXY2 two Arabidopsis glutaredoxin genes are required for anther development. Plant J. 53, 790-801.</Citation>
</Reference>
<Reference>
<Citation>Xing, S., Rosso, M.G. and Zachgo, S. (2005) ROXY1 a member of the plant glutaredoxin family is required for petal development in Arabidopsis thaliana. Development, 132, 1555-1565.</Citation>
</Reference>
<Reference>
<Citation>Xing, S., Lauri, A. and Zachgo, S. (2006) Redox regulation and flower development: a novel function for glutaredoxins. Plant Biol (Stuttg), 8, 547-555.</Citation>
</Reference>
<Reference>
<Citation>Yokotani, N., Ichikawa, T., Kondou, Y., Maeda, S., Iwabuchi, M., Mori, M., Hirochika, H., Matsui, M. and Oda, K. (2009) Overexpression of a rice gene encoding a small C2 domain protein OsSMCP1 increases tolerance to abiotic and biotic stresses in transgenic Arabidopsis. Plant Mol. Biol. 71, 391-402.</Citation>
</Reference>
<Reference>
<Citation>Zhang, Y., Su, J., Duan, S., Ao, Y., Dai, J., Liu, J. and Wang, H. (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods, 7, 30.</Citation>
</Reference>
<Reference>
<Citation>Ziemann, M., Bhave, M. and Zachgo, S. (2009) Origin and diversification of land plant CC-type glutaredoxins. Genome Biol. Evol. 1, 265-277.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Xu, Fan" sort="Xu, Fan" uniqKey="Xu F" first="Fan" last="Xu">Fan Xu</name>
</noRegion>
<name sortKey="Cheng, Xi" sort="Cheng, Xi" uniqKey="Cheng X" first="Xi" last="Cheng">Xi Cheng</name>
<name sortKey="Chu, Chengcai" sort="Chu, Chengcai" uniqKey="Chu C" first="Chengcai" last="Chu">Chengcai Chu</name>
<name sortKey="Chu, Chengcai" sort="Chu, Chengcai" uniqKey="Chu C" first="Chengcai" last="Chu">Chengcai Chu</name>
<name sortKey="Du, Lin" sort="Du, Lin" uniqKey="Du L" first="Lin" last="Du">Lin Du</name>
<name sortKey="Gao, Shaopei" sort="Gao, Shaopei" uniqKey="Gao S" first="Shaopei" last="Gao">Shaopei Gao</name>
<name sortKey="Tang, Jiuyou" sort="Tang, Jiuyou" uniqKey="Tang J" first="Jiuyou" last="Tang">Jiuyou Tang</name>
<name sortKey="Xu, Fan" sort="Xu, Fan" uniqKey="Xu F" first="Fan" last="Xu">Fan Xu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000183 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000183 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31436865
   |texte=   Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31436865" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020